q-DIFFERENTIAL EQUATIONS FOR q-CLASSICAL POLYNOMIALS AND q-JACOBI-STIRLING NUMBERS

نویسندگان

  • ANA F. LOUREIRO
  • JIANG ZENG
چکیده

The q-classical polynomials are orthogonal polynomial sequences that are eigenfunctions of a second order q-differential operator of a certain type. We explicitly construct q-differential equations of arbitrary even order fulfilled by these polynomials, while giving explicit expressions for the integer composite powers of the aforementioned second order q-differential operator. The latter is accomplished through the introduction of a new set of numbers, the q-Jacobi Stilring numbers, whose properties along with a combinatorial interpretation are thoroughly worked out. The results here attained are the q-analogue of those given by Everitt et al. and the first author, whilst the combinatorics of this new set of numbers is a q-analogue version of the Jacobi-Stirling numbers given by Gelineau and the second author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

q-Stirling numbers: A new view

We show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Π(n, k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number S...

متن کامل

q-Beta Polynomials and their Applications

The aim of this paper is to construct generating functions for q-beta polynomials. By using these generating functions, we define the q -beta polynomials and also derive some fundamental properties of these polynomials. We give some functional equations and partial differential equations (PDEs) related to these generating functions. By using these equations, we find some identities related to t...

متن کامل

ON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...

متن کامل

Connection preserving deformations and q-semi-classical orthogonal polynomials

We present a framework for the study of q-differential equations satisfied by q-semi-classical orthogonal systems. As an example, we identify the q-differential equation satisfied by a deformed version of the little q-Jacobi polynomials as a guage transformation of a special case of the associated linear problem for q-PV I . We obtain a parametrization of the associated linear problem in terms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013